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ABSTRACT

A microscopic model for the metal-solution interface is presented,

which, for the first time, includes both a non-ideal treatment of the

metal and a molecular model for the solution side. The metal is described

by a jellium including electron-ion pseudopotential. The solution is treated

as a mixture of hard spheres with point dipoles (solvent molecules) or point

charges (ions). The statistical mechanics is solved using the mean sphe-

q rical approximation. No a priori separation is introduced between compact

and diffuse layers. A simplified version of the model is applied to the

- case of Hg-DMSO systems.
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INTRODUCTION

The classical theories of the ideal polarized electrode are based on

two premises :

a) The metal has no direct effect on the differential capacitance C,

although it does determine the potential of zero charge and affects the ariew-

tation of solvent molecules. From an electrostatic point of view, every metal

acts just the same, the only interaction being that of ideal images.

b) The solution side has two layers : the external, or diffuse layer,

which can be described by such simple models as the Gouy-Chapman (G.C.)

theory, and the internal, or compact layer, which in the absence of specific

adsorption is formed only by solvent molecules.

These two premises are now being challenged. The important progress

in the theory of metals and metal surfaces in recent times makes it hard to

admit that the metal is totally unresponsive to changes in the electrolyte.

The surface charge distribution in the metal must respond to local changes in

the electrostatic f ip! produced by modifications in the ionic and solvent

distributions. Surely this will produce contributions to the differential

capacitance, that will be different for each metal, since the response to an

external field is different for each metal, and depends on details of the

electronic structure near the surface. In previous work (1]- [3] an estimate

of these effects was given. The solution side was reprebented by a layer of

dielectric material. In a recent publication, W. SCHMICKLER [4] has discussed

a similar model. His conclusions about the role of the metal are similar to

ours.

On the solution side, recent advances in the treatment of molecular

solutions [5][6], that is soluticns in which the solvent is not treated as a

continuum, have made it possible to treat the statistical mechanics of the

solution side of the electrode interface. Although the approach, in principle,

can handle realistic models of solvents and ions, the initial work has dealt

with a model in which the solvent is represented by hard spheres with point



dipoles [7]. This work was revealed two important deficiencies of the classica

treatment :
Ic

a) The separation of the inner and outer layers for the solvent

orientation process (or better polarization) implies a violation of Maxwell's"

equations. The dipoles of the solvent are oriented wherever there is an

electric field, that is, throughout the entire electric double layer.

local
b) The use ofVdielectric constants is also unwarranted. Although

this is a much more subtle problem, recent theoretical work [8] has shown

.1 that dielectric constants have a clear meaning only for large systems (ther-

modynamic limit) and not at the molecular level. The polarization is the local

variable that is required.

6 In this work we present a comprehensive theory in which all of these

concepts are included. In section 2 we review the models of the metal and

solution sides of the interface. The potential drop and capacitance are then

computed using a simple GMSA based model which has the obvious advantage of

analiticity and simplicity.

In section 3 we discuss the electronic density profile of this model.

We consider then a model in which the physical parameters are those of an
alkali-ion in DMSO in the neighborhood of a. mercury electrode.

In our model the point of zero charge is not the point of zero

* potential (which is the case in the restricted primitive model) : we discuss

also the change in the surface potential of the metal induced by the presence

of the solution. The influence of some of the parameters, and detailed compa-

rison between Hg and Ga electrodes will be discussed in future work.

In the last section we examine possible iru-rovements in our work.

I
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2. MODEL FOR THE SURFACE INTERACTIONS

Consider a plane, ideally smooth electrode. z is the distance from

the metal surface. The bulk metal is then given when z - - . For the

metal we use a jeallium model (with inclusion of the electron-ion pseudopoten-

tial). The details are given in [9], but for the sake of completeness we will

give an outline of this work. The metal ions are taken as a continum of

density p for z < 0 . In other words

p(z) - a e(-z)

where 8(x) is the Heaviside function

6 (x) - I x > O

e(x) - 0 x < 0

The electronic gas is free to move, but its equilibrium distribu-

tion n(z) will be the one that minimizes the total surface energy of the

system. The electron-ionic background interaction is given by a pseudopotential.

The properties of the electron gas, such as the kinetic, exchange and correla-

tion energies are computed using the local approximation.

On the solution side the ions are represented by hard spheres of

diameter ai and charge t e::, and bulk density pi. The solvent is also repre-

sented by hard spheres of diameter ad' point dipole u , and density p."

We assurie that no chemical reaction can take place, no miscibility

between the phases [10]. However, this model does not exclude the existence

of a surface layer in which all the particles are present. In fact, the

existence o. this layer is consistanc wi:h :he contemporary :heories

We use Bohr atomic units e - electron charge

m = mass

e - = I

Bohr radius a - .529 A
oEnergy unit I Hartree -27.2 eV
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of the metallic surfaces. Any model which does not include this layer leads

to predictions which are incompatible with experiments [11111].

In our model, the electrons can diffuse into the ionic solution.

In actual practice, calculations show that both in the interface with the

vacu um ] or with a dielectric filmE , the electron density spill over is
very small. However the change in the spill over with the electrode charge

- will give a direct contribution of the metal to the differential capacitance
, [1][4].

The metal electrons in the solution are subject to electrostatic

interactions (electron-ion and electron-dipole) but also a repulsion due to

the core electrons of ions and solvent molecules. These are represented by

the Harrison repulsive potential [9].

There are several parameters in our model that are fixed a priori,

but which should come out of a first principles calculation. One of these

quantities is the distance of closest approach of the ions and solvent to

the plane z - 0 (the metal surface). We will assume that it is just the sum

of the molecular radius of the solvent or ions (which for this simple model

are considered to be equal) and the radius of the metallic ion. In reality,

this parameter should arise from a self-consistent density functional calcu-

lation [13].

In short, we will assume that there is an ideally smooth wall,

located at z - 6 , which cannot be penetrated by either ions or solvent mole-

cules. The distances of closest approach are
ib

ionfor ions

Zmo = ,/2 for solvent molecules

There is also the problem of surface smoothness and structure.

From recent experimental evidence, it is known that certain metal surfaces

are subject to structural changes during chemisorption processes . In

these cases the surface overlayer changes its structure. It is quite concei-

vable that in an intrinsically more labile environment such as that of liquid

metals, the metal overlayer would also respond structurally to changes in

potential.



Furthermore, the question of surface ripples (capillary waves) at

the interface, and its effects on the structure and thermodynamics of the

electrode is not discussed. We hope to address these and other questions in

Afuture work.

Summarizing, the ions and dipoles in the solution do not see simply

a hard, charged surface, but rather the sum of a charged surface (located at

6 + a/2 ) and a distribution of electron density beyond the plane of closest

approach.

Even this simple model is not easily amenable to a complete nume-

rical calculation. We will, therefore, in this first communication , use a

simplified theory that has the advantage of giving explicit analytic

expressions for the physically relevant quantities.

3.'A SIMPLIFIED MODEL

For simplicity, we shall discuss only the restricted model in which

a. =a+ a_ - d 2 C (Although not in published form, the results for

a+ =- a d are also available). We neglect also the effects of the electron

density on molecules and ions in the solution. We shall leave the discussion

of the validity of this assumption for the future:* The solution is represented

by the MSA [5][61 which is only qualitatively correct. Near a charged

interphase a simplified theory, valid presumably for dilute solutions, has

been developed by Blum and Henderson [7]. In this theory, the dipolar interac-

tions are decoupled from the ionic distributions, which are given by the

modified Gouy-Chapman (MGC) theory. We are thus satisfying the electrostatic

part of the contact density theorem. The simplified model of the interface

is given on Fig. 1.

The charge density profile is given by

qi(z) ()< qM e-(z-d)



where K is Debye's inverse length and

d - +a/2

The total excess charge of the solution side is

qs dz qi(z) " -qqM (2)d1

The electroic density profile is postulated to be of the

form [1](9] :

n(z) - n c(z-) z< z2 ](3)

- (n/2) e(Z-Zo) z z0

where n is the bulk metallic electron density..Clearly, the total excess

charge on the metal side is

.40

qM f dz [p6(-z) - n(z)] - - 0nz (4)

This last relation also defines z 00

For a given value of a , and q., the charge and polarization (P(z))
profiles are computed from the theory (7]. These in turn yield the potential

V(z) and electric field E(z), which are obtained by solving Poisson's

equation

E(z) 2 V(z) 4r [pe(-z) - n(z)

3z az2  (5)

*+ O(z-d) (Ktnz eKt(z-d) - Z1
0 - z

The potential V(z) is continuous in all space. Because of the

discontinuities in the density profiles, V(z) has a different form in the

regions

I) -=<z<O

II) 0 < z < d

III) d < z <
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The solution of (5) is straightforward, and is explained in

Appendix I. The total potential drop across the interface is

AV V() V(.) _ 47rn ad -z +

a (6)
4wnz

+ 0+ 41f P(z) dz.
d1

The integral in this expression is explicitly known. The readar

is referred to Ref. 7 (eq.15) for the derivation. The result is

q 47 f dz P(z) = lim v(s)
d I  s- O

The Laplace transform P(s) is

P(s) - 47 dz is z P (z)
d1

48wqp d 
___4_qM_= ( ) (7

3 Y-- (K + s) A(s)

82 8 2

!! 6 a 3 4 21

Here pd is the bulk number density of solvent molecules. The

coefficients 83, 86 and $812 are functions of the bulk dielectric constant

of the solvent, and are given through an auxiliary parameter X

B.3A3 (3/2) 1 +
2 + X 6 2 + X 12 2  +X

The auxiliary parameter X is computed from the equation

: = (8')

16

The functions 0,(s) and A(s) are defined by

01(s) = 1I/(s) 2 [1 - sO- e-s ]

A(s) = 1.- 20l(S) (X2 1) - 4 02(s) (X2 - )
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with 2 L( 5 ) 1 )9)

I IThen

4w O- 4wnz acc -I 1 ~

Substituting into equation (6) yields

4wnz

&V - -4 2lrnz 2 + o {0 + *d (+) (1 E)I+ (!-)

at the point of zero charge (z° - 0), this expression simplifies to

AV- --- (12)-

The potential drop across the interface is a function of only n

and a , which are metal parameters. This however does not mean that the

potential AV is equal to the surface potential of the metal-vacuum interface

M X, since a is also a function of the solution parameters. In the limit C m

the electronic profile tends to n(z) - n (z-z o), and then Eq.(I!) is not

the same as the expression given in[14]. There are two reasons for this

discrepancy. First, the term 2rnz2 does not exist in[14], because now the

charge is not localized at the plane z - 0. Secondly, the third term in (1)

is not that of[14]. However, if d I = a/2 then they are identical. This

means that an additional capacitance term appears because of the shift 6

in the metal background profile.

The differential capacitance of the system is

I 3AV v 3AV(13)
C @q aq~ az _

using (11), we obtain

! 4+ K4 -I ]

+ + + 4T.[j-

(14)

- 4 "r a [ /a21 + 4w z 3

3z o5Z

0 0j



In this expression the first term of the right hand side is the

result of the MSA [7][8]. If the solvent molecules are shrunk to point

dipoles (ad - 0), one should recover, from (14) the differential capacitance

of the modified Gouy Chapman theory. Otherwise [14] one can define the effec-

tive dielectric constant.

+
£-- (15)

which then yields the MGC result with the effective dielectric constant C. We
must remark that in spite of the formal ressemblance, the physics is diffe-

rent, since the solvent is polarized throughout the entire electric double

layer.

The second term of (14) arises from the fact that the electrode

* charge is not localized at z - 0. The next term is due to changes in the

dipolar surface layer of the metal as a function of the excess charge. And

the last term reflects the fact that the distance dI is also a function of

the excess charge. A detailed discussion of this fact canobe found in [3].

At the point of zero charge this term vanishes.

Because of the intrinsic limitations of the MSA, we will limit

ourselves to small surface charge densities around the point of zero charge.

Thus, for a given value of dj, we only need to compute a for the

differential capacitance C.

4. ELECTRONIC DENSITY PROFILE

The -n'atz- (3) on the e ronc density profile is narticularly

convenient since n(z) only depends on the parameter a . We will compute

this parameter by minimizing the surface excess energy U . The kinetic energy

and the non-coulombic part of the electron - neutralizing background are not

affected by the presence of the solution, and therefore we use the expres-

sions given in Ref.[9] (Eq. 14 with a -

!
41
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- !.6423 n2/3 + 0.25037 U1 / 3 + .0065841UKint x " uinh ";(

+ cn(log2) /72

The pseudopotential contribution U s to the energy is given by

(Eq. 10 of [1] with a - 8) :

21rn2 _ e"M (ARM A (e 0-o)
aS C (17)

un2 2 AM
a(lz 0I + A0 z/ /2 - A o

where A0 and RM are the pseudo potential parameters of Heine and Animalu

(see also [1] ).

The electrostatic energy is computed from the charge and polariza-

tion profiles, and the potential V(z) which has been calculated in Appendix I.

We find

U n [ _ 8azo(az) + 5 + 4az e - (di - zo)es 2a 30 00

2 -ze" ( d l - z o )

4e -aIz o- z 
( 1)

I + K/a

27rn f dz P(z) e " ( z - zo) + C
a dl

The last term Ct consists of the remaining contributions :o the

energy which are not functions of a, and thus irrelevant to our calculation.

The term before the last in (18) represents the interaction of the

electrons with the local polarization of the solvent molecules in the solution.
1%0

This contribution is easily calculated from the Laplace transform P(s) (Eq.7) :

2Trn a. _o 2T_n eazo ~ )(

-- a- I dz P(z) e - (za - 0 2a) (19)
d a



There is also another contribution due to the repulsive interactions

of the electrons and the electronic clouds of the ions and solvent molecules

S[9]. These interactions are represented by Harrison's pseudopotentials, with

parameters X. (for ions), Ad (for solvent ). This interaction is independent

from the ionic charge or solvent dipolar orientation, and because of the use

of the MSA, it will depend only on the total density profile p0 (Z). Since

all the particles are hard spheres of. equal diameter, a single parameter X

- (a weighted average of X. and Xd) will be enough for our purposes. We get

UB f dr f dz' n(z) (r- r') po(Z') (20

- dpd 2XiP+
Pd + 2p+

where pd is the dipole concentration and p+ is the (+) ion concentration.

The integration is easily performed

U 2 f dz e pO(Z) " (21)
dl

= 2 eaz° p (a) (2!')

where po (c) is the Laplace transform of the total density distribution

function ( po(Z) - pd(z) + p+(z) + p_(z) ) . We get

UB - e (d1-z) 3(i'. ) (22)(S)

6 Q Q(a)

where 5s) 1 + 2n ; 6 ) - n ; 12 = (1 + n/2)

wi-h 7 - 6 (P + O + P - ) (; 3

I,(s) s 62 (S)/(S)2and (ica) = I - 12 1(a) 12 / 06 - 12n 2 (0 ) /

The functions 4l(a) and 2 (a) are defined by Eqs (9).
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The total surface energy is then

Ua Ukn 4 ec + Uih + Us +es + UB

Using Eqs (16-22) we get, finally

u -a

TU
7r,2 13 2C% + % al 3 2 0 ] 'ee e = + '

A
o

A2 2
2aRM +. [2 + (azo)2 -(M)]] (23)

-a (d - Z a 2 + 3 D [ I
+E0- D -'IV 4 .+ 2  1

aQ(ia) L 3 WK !(a) 17)IX 1

I

The coefficients C1, C2 , E, D, are given in the Appendix 2.

In Equation (23), all the electrostatic interaction terms with

the solution cancel at z ° = 0, the point of zero charge, The shift in the

surface potential of the metal, when it is taken from the vacuum to the

solution is due to the electron-solution repulsive interactions.

The minimization of U yields then a . This parameter is then5
used to compute the properties of the electrode with the aid of (11)

and (19).
I4
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5. RESULTS

Clearly the MSA as a weak coupling parameter theory is not suited

to describe the behaviour of hydrogen bonded solvents, such as water. However,

an aprotic solvent like DMSO can be reasonably described by the MSA. Indeed,

with the experimental values for the density Pd (14.05 M/dcm3 at room tempe-

rature) and the permanent dipole moment u ( l 4 Debye), the NSA yields

c - 58 instead of the experimental value 47.15 (see for instance [8] for

the MSA expression of e ). From (8') this gives for X respectively 2.49 ad

q 2.39.

From (14) we see that the molecular contribution to the differen-

tial capacitance C depends only on c , while from (23) x depends on A (or e),

Pd and u . We have checked that changing X does not affect significatively

the value of a which minimized U , and hence the metal contribution to the

capacitance. Therefore we have used X - 2.39 (-i.e. e - 47.15) in the nume-

rical computations.

We now choose the effective diameter of the DMSO molecule so that

the parameter

.rr 3
- 6 g d - 0.45

which is the value of the volume fraction characteristic of many liquids.
0

This yields a - 8.81 a.u. (4.66 A), which is a little small, but not

unreasonable for this molecule. The ionic diameters are taken also to be

8.31 a.u. Fig. 2 shows the corresponding !.SA density profile for the mole-

cules which have their dipole moment normal to the interface.

The electrode is liquid mercury, for which the parameters n, RM
and A are taken from [9]. For the mercury-vacuum interface we found

0

a = 0.901 u.a. and a surface potential xm = 5.34 eV. Since we will also
0
include some results for gallium, we refer the reader to our previous work

(9].

Two of the parameters of the problem are free, and have to be

selected using physical intuition. They are 5 and 2 . It seems realistic
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a

to choose the value of 6 between 0 and R the crystallographic radius of

the ions in the metal [9].

For water the parameter X has been estimated to be 'u 15. For DHSO

we might expect an even higher value since there are 54 electrons in DMSO

against 10 in water. In table I we show the influence of X on a assuming

that d - a/2 or d - R + a/2 . As expected the repulsion term with theI c
- solution causes an increase in the values of a . This is similar to what we

found previously [9]. In fig. (3) we have plotted the shift in the surface

potential of the metal dxm - 4irn (- calculated at the point of zero

I charge as a function a o of the distance d . The corres-

ponding case of gallium for - 30 is also shown.

49 The repulsion from the solution is not enough to keep the electrons

in the region z < d . There is always a small charge spillover, - 6q, in

the region z > di.

Sc e-a(z-zo) n e-aCZ-Zo)
q 2 2ad1

In fig. (4) we show 6q(d I) for both Hg and Ga. The spillover Sq

is larger for Ga than for Hg.

In the simple model presented here, this effect has been neglected

in calculating the charge distribution and the polarization in the solution.

It is clear that this approximation is less justified for Ga than forHg.

However, the mathematical tools to include it are available and we will

indeed discuss these effects in a near future.

The fact that there are electrons on the solution side even at the

point of zero charge, indicates that the solvent molecules must be polarized

at the interface even at the point of zero charge. Note that the ratio

5q(Ga) / 6q(Hg) is not simply the ratio of the electronic densities.

The differential capacitances for the mercury electrode are presen-

ted in table II.'They were computed from the curve AV - f(qM) by numerical
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a

differentiation. With the parameters of this article the zero charge capaci-

tance corresponding to an ideal metal would be

C" 7.94 _ _ _ _ -41r I +T (I EI.

We see that the total capacitance crucialy depends on the

- distance dI .

When dI is large the value of C is greater than C. but the effect

of the non-ideality of the metal remains small. On the other hand, when the

distance of Closest approach decreases (for instance if there is interpene-

" tration between the metallic ions and the particles of the solution) this

effect becomes quite important and the influence of 1 is not negligible (for

comparison the experimental value if 18 UP/cm2 for LiClO4 ions [15] ).

First calculations show that the differential capacitance for Ga
would be greater than for Hg, as observed experimentaly.

4

4

I

I
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6. CONCLUSIONS

We have presented a realistic model of the metal solution interface,

in which the metal is not an ideal smooth metal, but a jellium model. A

simple discussion of this model is given. The results confirm earlier calcu-

lations 1]-[4] that indicate that the metal makes an important contribution

to the differential capacitance C.

The solution side of our model is a mixture of hard spheres with

q charges and point dipoles. No a priori separation of ccmpact and diffuse

layers is postulated in this model, and it also does not involve the use of

local dielectric constants (a meaningless quantity). The calculations show

that the solvent molecules are polarized even at the point of zero charge.

This is so because of the spillover of electronic charge into the solution,

which produces non zero electric fields in the metal-solution boundary layer.

Although we have treated this effect only crudely, the recent work on the

GMSA [16] of the ion dipole mixture allows a consistent calculation of this

effect.

We show also that the distance d of closest approach of the metal

ions and the solution ions is a crucial parameter in the determination of

the differential capacitance C. However this is also a drawback since the

fact that d is unknown makes the comparison of C with experiment a not very

meaningful excercise. Indeed a value of d which fits the experiments could

be found.

However, the model that we have discussed here represents the most

comprehensive one that we are aware of. We are undertaking a detailed study

of the influence of various parameters, such as ionic concentration, density

and dipole moment of the solvent, etc. on the differential capacitance. The

results will be published in the near future.
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15 : 30 : 45
* . . .

. , . .

: d R + a/2 : 0.905 : •0.908 : 0.911 :

dI -R. : 0.916 : 0.932 : 0.947 :

. .

Table I - Values of the profile parameter a (Hg) as a

function of d and X . For the bare surface cto- 0.901 a.u.

d
, R a :a a

c 2 : 2 2

: 15 : 9 : 20.8 100

. * , , , .,.

30 : 9 : 18.7 : 58.8

* . . a-.

45 8.7 : 16.6 43.4 :

Table II - Differential capacitance of the interface (pF/cm )

a3 a function of d and X. The concentration is c = 0.1 M/i.

-
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FIGURE CAPTIONS

(.

Fig. I Simplified model of the interface.

6 position of the ideally smooth wall.

c- diameter of the ions and solvent molecules.

Fig. 2 = Jellium model and density profile of the dipoles normal to the
iuterface.!

Fig. 3 : Dependence of 6Xm on the parameter d, for different choices of X.
(1) Hg -15 .. (2). Hg 30

(3) Hg )=45 (4) Ga =30.

Fig. 4 Dependence of the charge spillover 6q on the parameter d1 for Hg

and Ca.
(X-30 and C 0 .1 Mi.



APPENDIX I

Electrostatic Potential Profile

Integrating (5), we get, (using also (1) and (3)

a) For negative metal charge qM (z0 > 0)

V(z) M __ ea(Z-Zo) (--<z<o)
V12 2 _ "'a(z-zo) 

2V(z) - 2?rn(z 2  a ,/L (O < z < zo0)

V(z) - 2wn[z (2z -z )-2/2 + e -(Z-Zo)/CL2 (z < z < d)

0 0 0

V(z) - 2rn[zo(2d I - Z) - 2/a2 + e-(z-zo)/ 2 ] + 4vTnZo/0

z 4"rnz (z >dl

+ 47T f dz' P(z') e (z > d
d I I

b) For positive qM (zo < 0)

V(Z) L 2n e <z<z2
)

V(z) = -27rn [(zz 0)2 + 2/ - e-a(Z-zo) /a2 (z ez < O)

V(z) 2Tn [z (2z- zo ) - 2/a 2 + e-a(z-z) /a2 ]( < z < d)

For d < z < - the equations are those of the case q < 0

Mi



APPENDIX 2

We give explicit formulas for the coefficients of Eq. 23

1 2/3 1/3 0
- C1  - 3 F 1.6423 n + 0.25037 n + 0.006584]

- 1 log 2
2  7rn 72

E( + 2n)
E " ' (1-n)2

8w i 2 P
8 2d

D -kT X(2- A)

( These coefficients are computed once and for all for a given metal and solvent.

4
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